作者单位
摘要
1 广东工业大学物理与光电工程学院,广东 广州 510006
2 广东工业大学广东省信息光子技术重点实验室,广东 广州 510006
采用高温熔融法制备Yb3+/Tm3+共掺的磷酸盐玻璃,探讨了Tm3+摩尔分数和玻璃基体中Te4+摩尔分数对玻璃上转换发光性能的影响。吸收光谱表明,玻璃中的Yb3+和Tm3+在300~1450 nm波长的吸收位置互不干扰。研究了制备的玻璃样品在980 nm波长激光二极管泵浦下的上转换发光性能。结果表明,Yb3+/Tm3+在476 nm(1G43H6)、650 nm(1G43F4)和793 nm(3H43H6)三个位置有上转换发光峰。其中,793 nm的近红外发光峰最强,476 nm的发光峰强度次之,650 nm的发光峰强度最弱。通过调整Tm3+的摩尔分数和玻璃基质中Te4+的摩尔分数可以实现对上述三个发光峰强度的调制。
材料 磷酸盐玻璃 上转换发光 铥镱共掺 组分调控 
激光与光电子学进展
2022, 59(15): 1516009
Author Affiliations
Abstract
1 School of Microelectronics, University of Science and Technology of China, Hefei 230022, China
2 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Graphene field-effect transistors (GFET) have attracted much attention in the radio frequency (RF) and microwave fields because of its extremely high carrier mobility. In this paper, a GFET with a gate length of 5 μm is fabricated through the van der Walls (vdW) transfer process, and then the existing large-signal GFET model is described, and the model is implemented in Verilog-A for analysis in RF and microwave circuits. Next a double-balanced mixer based on four GFETs is designed and analyzed in advanced design system (ADS) tools. Finally, the simulation results show that with the input of 300 and 280 MHz, the IIP3 of the mixed signal is 24.5 dBm.
Journal of Semiconductors
2022, 43(5): 052002
作者单位
摘要
1 Department of Materials Science and Engineering and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
2 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
4 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
5 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
plasmonic semiconductors fiber laser modelocking ultrafast generation 
Frontiers of Optoelectronics
2020, 13(2): 139
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, School of Instrumentation Science & Optoelectronics Engineering, Beihang University, Beijing 100191, China
We present an Er-doped fiber (Er:fiber)-based femtosecond laser at 780 nm with 256 MHz repetition rate, 191 fs pulse duration, and over 1 W average power. Apart from the careful third-order dispersion management, we introduce moderate self-phase modulation to broaden the output spectrum of the Er:fiber amplifier and achieve 193 fs pulse duration and 2.43 W average power. Over 40% frequency doubling efficiency is obtained by a periodically poled lithium niobate crystal. Delivering through a hollow-core photonic bandgap fiber, this robust laser becomes an ideal and convenient light source for two-photon autofluorescence imaging.
140.7090 Ultrafast lasers 140.3500 Lasers, erbium 140.3515 Lasers, frequency doubled 
Chinese Optics Letters
2019, 17(7): 071405
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0.4 nJ. The minimum pulse duration of the direct output is 44.6 fs, which is the shortest in this kind of laser.
140.4050 Mode-locked lasers 140.3500 Lasers, erbium 
Chinese Optics Letters
2018, 16(11): 111401
作者单位
摘要
1 北京大学人工微结构和介观物理国家重点实验室, 北京 100871
2 北京大学区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871
研究了不同厚度周期极化铌酸锂晶体(PPLN)对掺铒飞秒光纤激光器倍频特性的影响。基于非线性偏振旋转锁模原理和啁啾脉冲放大技术,在1560 nm波段实现了重复频率为100 MHz,输出功率为423 mW,脉冲宽度为80 fs的掺铒飞秒光纤激光输出。以此为基频光源,对0.5,1,10 mm三种不同厚度PPLN倍频晶体进行倍频特性研究,实现了波长在780 nm的飞秒激光输出。其中采用0.5 mm晶体时获得了功率为100.4 mW、脉冲宽度为104 fs的倍频光输出,倍频转换效率为23.7%;采用1 mm晶体时获得了功率为165.0 mW、脉冲宽度为161 fs的倍频输出,倍频转换效率为39%;采用10 mm晶体时获得了功率为185.5 mW,脉冲宽度为305 fs的倍频光输出,倍频转换效率达43.7%。并解释了倍频转换效率和倍频光脉冲宽度随PPLN晶体厚度的变化规律。实验数据为基于锁模光纤激光器产生780 nm波段飞秒光脉冲的研究提供了有益的参考。
激光器 掺铒飞秒光纤激光器 啁啾脉冲放大器 非线性偏振旋转锁模 倍频 周期极化铌酸锂晶体 
中国激光
2018, 45(7): 0701001
作者单位
摘要
1 西安交通大学 电力设备电气绝缘国家重点实验室, 西安 710049
2 中国科学院 上海光学精密机械研究所, 上海 201800
针对灯箱中反射器的设计和运行情况,设计实验量化了反射器对氙灯辐射和钕玻璃荧光效率的影响。氙灯辐射由强流管测量的氙灯辐射波形和能量计测量的辐射能量获得;钕玻璃荧光由自主设计的荧光测量系统获得;同时,使用高速摄影仪对放电通道进行观测。实验发现,反射器在此次实验条件下可以提高氙灯辐射效率89%,提高钕玻璃荧光效率78%。而且,实验发现工程运行中氙灯“发白”,是反射器引导氙灯放电通道在靠近反射器一侧形成,导致该处过度烧蚀的结果。
反射器 氙灯辐射 荧光 放电通道 reflector flash lamp radiation fluorescence discharge channel 
强激光与粒子束
2018, 30(3): 032001
作者单位
摘要
1 西安交通大学 电力设备电气绝缘国家重点实验室, 西安 710049
2 中国科学院 上海光学精密机械研究所, 上海 201800
3 中国工程物理研究院 上海激光等离子体研究所, 上海 201800
脉冲氙灯作为放大器的泵浦源, 其泵浦效率直接影响放大器效率。环形氙灯被证明是一种有望提高泵浦效率,并代替目前直管氙灯工作的新型氙灯。针对不同气压、不同结构的环形氙灯, 通过实验研究了气压和内径对环形氙灯放电特性、光效特性以及爆炸特性的影响。结果表明, 增加环形氙灯气压和内径可提高其光学效率, 被泵浦钕玻璃的荧光最大可提高峰值22.3%, 积分值15.7%。但是, 增加气压和内径会降低环形氙灯的热负载能力。实验发现气压为26 664 Pa, 内径为30 mm的环形氙灯拥有最佳光效并能通过寿命测试。
环形氙灯 气压 内径 光效 爆炸特性 annular flash lamp pressure internal diameter radiation efficiency explosion characteristic 
强激光与粒子束
2018, 30(2): 022001
作者单位
摘要
1 北京大学信息科学技术学院, 北京 100871
2 华南师范大学信息光电子科技学院, 广东 广州 510631
3 温州医科大学附属眼视光医院, 浙江 温州 325027
设计了一种基于偏置相移非线性环路反射镜的全保偏锁模光纤激光器。搭建了全保偏锁模振荡器系统,该系统通过二级掺镱光纤放大获得了平均功率为2.4 W、重复频率为20.3 MHz、脉冲宽度为142 fs的脉冲序列输出。由于振荡器采用全保偏光纤结构,锁模具有良好的抗环境稳定性。
激光器 保偏光纤 锁模 非线性环路反射镜 
中国激光
2017, 44(5): 0501011

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!